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A New Approach to Solve the Low-lying States
of the Schroedinger Equation
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We review a new iterative procedure to solve the low-lying states of the
Schroedinger equation, done in collaboration with Richard Friedberg. For the
groundstate energy, the nth order iterative energy is bounded by a finite limit,
independent of n; thereby it avoids some of the inherent difficulties faced by the
usual perturbative series expansions. For a fairly large class of problems, this new
procedure can be proved to give convergent iterative solutions. These convergent
solutions include the long standing difficult problem of a quartic potential with
either symmetric or asymmetric minima.

KEY WORDS: Low-lying states of Schroedinger equation; convergent iterative
solution; electrostatic analog; hierarchy theorem.

1. IMPORTANCE OF LOW-LYING STATES

It is a common belief that most of natural phenomena should be described
by solutions of the Schroedinger equation. Take the non-relativistic Sch-
roedinger equation of a system of charged particles with Coulomb inter-
actions. In principle, this single N -dimensional second order linear partial
differential equation contains in its solutions all information about many
disciplines: atomic and molecular physics (except for small relativistic cor-
rections), condensed matter physics, chemistry and biology. Furthermore,
for most of these applications we need only knowledge about its low-lying
states. For these low-lying states, actually we do have very good informa-
tion about their wave functions when the Coulomb interaction is strong;
i.e., when the wave amplitude is large. How come that we still have great
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difficulties in solving these equations? Quite often, the challenge lies in
how to handle the large number of configurations when the interaction is
weak.

In quantum chromodynamics (QCD) and quantum electrodynamics
(QED) the tasks are even more difficult since we do not have any exact
solution. Besides the very promising lattice and other numerical calcula-
tions, we rely mostly on perturbative expansions. Yet, such expansion often
leads to a divergent series with zero radius of convergence, as exemplified
by the perturbative calculation of the gyromagnetic ratio g of the muon
(1–3):
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)5 +· · · , (1.1)

where α is the fine-structure constant. The coefficients are all positive, and
each successive one becomes larger and larger. There are good reasons (4)
to believe that the vacuum state of QED would be unstable against pair
creations if α could be analytically continued to the negative region. Thus,
the difficulty of perturbative series seems to be again closely related to our
inability to solve the low-lying states of the corresponding Schroedinger
equation. In QCD, because of the existence of instanton configurations,
similar serious problems also exist for its vacuum and other low-lying
states.

This situation may be illustrated by the following one-dimensional
problem with a quartic potential of degenerate minima. The Schroeding-
er equation can be written as

(T +V −E)ψ=0, (1.2)

where T =− 1
2
d2

dx2 and

V (x)= 1
2
g2(x2 −a2)2. (1.3)

An alternative form of the same problem may be obtained by setting q≡√
2ga(a−x), so that the Hamiltonian becomes

H =T +V ≡2gaH (1.4)
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with

H=−1
2
d2

dq2
+ 1

2
q2(1− e q)2, (1.5)

in which H, q and e= 1/
√

8ga3 are all dimensionless. The perturbative
expression of the groundstate energy E is (5–14)

E=ga− 1
4a2

− 9
64

1
ga5 − 89

512
1

g2a8
−O

(
1

g3a11

)
, (1.6)

or, in terms of the dimensionless coupling e2

E=2ga
[

1
2

− e2 − 9
2
e4 − 89

2
e6 −· · ·

]
, (1.7)

which has a similar characteristics as the (g−2) expansion (1.1).
In this one-dimensional case, from (1.5), one sees that for e2 negative,

H has no groundstate; this explains why the power series (1.7) is divergent.
For e2 =1/8ga3 positive, it is also possible to trace the origin of the diffi-
culty. The corresponding perturbative series of the groundstate wave func-
tion ψ(x) may be written as

ψ(x)= e−gS0−S1−g−1S2−g−2S3−··· . (1.8)

Since the potential V (x) has two degenerate minima at x=±a, there are
two different expansions depending on the normalization condition:

ψ(a)=1, or ψ(−a)=1. (1.9)

In either case, the perturbative series is divergent for any g. However, for
g large, the wave function ψ(x) can be approximately described by the
first two terms of these expansions. For x > 0, using the normalization
ψ(a)=1, we find

e−gS0−S1 = 2a
a+x e

− g
3 (a−x)2(2a+x), (1.10)

and for x <0 with ψ(−a)=1,

e−gS0−S1 = 2a
a−x e

− g
3 (a+x)2(2a−x). (1.11)
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Unlike ψ(x), neither expression has a zero derivative at x=0. Furthermore,
each carries a spurious pole-term, at x=−a for (1.10) and x=a for (1.11).
In addition, if one stays with the perturbative series (1.8), each successive
higher order expansion accentuates further these spurious pole terms. This
suggests that we must not follow the high order perturbative expressions,
especially in the region x near 0, when ψ(x) is exponentially small.

In all these problems, it is not difficult to construct a trial function φ
such that

φ≈ψ when ψ is large, (1.12)

and with the correct symmetry properties of ψ (e.g., φ(x) = φ(−x) for
the quartic potential problem (1.2)–(1.3)). The question is how to device
a convergent procedure that can lead from the trial function φ to the cor-
rect ψ .

In the following we will discuss such a method by first following the
approach developed in a recent series papers by Friedberg et al.(15–19).
Next, we generalize several of their results proved for one-dimensional
problems to N -dimension. In particular, the extension of the hierarchy
theorem to a radially symmetric potential in N -dimension discussed in
Section 4 and its proof given in Appendix B are both new results. In
addition, Appendix C contains a new comparison between this iterative
approach and the usual perturbative expansion.

2. THE NEW METHOD

As examples of the types of Schroedinger equations that we are inter-
ested, consider the bosonic component of QED or QCD in the axial
gauge, or a system of nonrelativistic particles. In either of these cases
the kinetic energy T is a quadratic function of momentum operators.
Through a linear transformation of the relevant coordinate variables, the
Hamiltonian H can be written as

H =T +V (q), (2.1)

where

q= (q1, q2, . . . , qN) (2.2)

and

T =−1
2

N∑
i=1

∂2/∂q2
i =−1

2
∇2 (2.3)
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with N = ∞ in the case of a field theory. Let ψ(q) be the groundstate
determined by

(H −E)ψ=0. (2.4)

To derive ψ(q), we proceed as follows (15–19):
1. Construct a good trial function φ(q), so that

φ(q)≈ψ(q) (2.5)

in regions when ψ(q) is expected to be large. An example of how to con-
struct such a trial function is given in Appendix A.
2. Construct U(q)−E0 by differentiating φ(q):

U(q)−E0 ≡
(

1
2
∇2φ

)/
φ. (2.6)

Define
H0 =−1

2
∇2 +U(q). (2.7)

We have
(H0 −E0)φ(q)=0. (2.8)

Introduce the differences h and E by

H0 −H =U(q)−V (q)≡h(q) (2.9)

and
E0 −E≡E . (2.10)

The original Schroedinger equation (2.4) can be written as

(H0 −E0)ψ(q)= (h−E)ψ(q). (2.11)

We assume that the trial function is well chosen so that h(q) is well-
behaved at ∞. From the definitions (2.9) and (2.10), we see that since

h(q)−E = [U(q)−E0]− [V (q)−E] (2.12)

depends only on the difference [U(q)−E0], we can choose the constant E0
by requiring that q=∞,
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h(∞)=0. (2.13)

For the discussions of the groundstate, we take both

ψ(q) and φ(q)to be real and positive. (2.14)

Multiplying (2.11) by φ(q) and (2.8) by ψ(q), then taking their differ-
ence, we have

−1
2
∇ · (φ∇ψ−ψ∇φ)= (h−E)φ ψ. (2.15)

The integration of (2.15) over all space gives
∫
(h− E)φψdNq = 0; there-

fore,

E =
∫
h φ ψ dNq

/ ∫
φ ψ dNq. (2.16)

It is convenient to introduce

f (q)=ψ(q)/φ(q); (2.17)

(2.16) becomes then

E =
∫
h(q)φ2(q)f (q)dNq

/ ∫
φ2(q)f (q)dNq. (2.18)

3. We propose to solve the Schroedinger equation (2.11) by an iterative
process, defined by

(H0 −E0)ψn(q)= (h(q)−En)ψn−1(q) (2.19)

with n=1,2, . . . and for n=0,

ψ0(q)=φ(q). (2.20)

Multiplying (2.19) by φ(q) and (2.8) by ψn(q), then taking their difference,
we derive

−1
2
∇ · (φ∇ψn−ψn∇φ)= (h−En)φ ψn−1. (2.21)
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Analogous to (2.16), we have

En=
∫
h φ ψn−1d

Nq

/ ∫
φ ψn−1d

Nq. (2.22)

Note that in each step of the iteration from n−1 to n, for any particular
solution ψ0

n(q) that satisfies (2.19), so is

ψn(q)=ψ0
n(q)+ cnφ(q) (2.23)

also a solution where cn is an arbitrary constant. Since φ(q) is positive in
accordance with (2.14), we can choose cn so that

ψn(q) is positive everywhere. (2.24)

It is clear that (2.24) can be realized in the q-space within any finite
domain, however large, because of (2.13), the same conclusion (2.14)
also holds for the entire q-space, including infinity. (The same property
can also be established by using the electrostatic analog, which will be
discussed in the next section.)

Define

fn(q)=ψn(q)/φ(q) (2.25)

and therefore (2.22) becomes

En=
∫
h φ2fn−1d

Nq

/ ∫
φ2fn−1d

Nq. (2.26)

From (2.24), we have

fn(q) positive. (2.27)

As we shall see, a particularly convenient choice of the constant cn is to
set the minimum of fn(q) to be 1 and therefore

fn(q)�1. (2.28)

From (2.26) and (2.27), it follows that En is bounded if h(q) is bounded.
Therefore, as n→∞, lim En cannot be ∞. This avoids the type of diver-
gence difficulties that appears in the example (1.7). It is therefore reason-
able to expect that limn→∞ En should converge to the correct E , at least
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when h is small. As we shall see, for a fairly large class of problems,
including the quartic potential (1.3), the convergence of En turns out to be
independent of the magnitude of h(q), provided that it is finite and satis-
fies some general conditions.

In this paper, we concentrate on the groundstate. Extensions to some
low-lying states can be found in ref. 17.

3. AN ELECTROSTATIC ANALOG

In terms of the ratio fn =ψn/φ introduced in (2.25), the nth order
iterative equation (2.21) can be written as

−1
2
∇ · (φ2∇fn)=σn(q), (3.1)

where

σn(q)≡ (h(q)−En)φ2(q)fn−1(q) (3.2)

and when n=0,

f0(q)=1 (3.3)

in accordance with (2.20). Assuming that ψn−1(q) has already been solved,
we can determine En through (2.22). Therefore, σn(q) is a known function.

Consider a dielectric medium with a q-dependent dielectric constant,
given by

κ(q)≡φ2(q). (3.4)

Interpret σn(q) as an external electrostatic charge distribution, 1
2fn the

electrostatic potential, − 1
2∇fn the electrostatic field and

Dn≡−1
2
κ∇fn (3.5)

the corresponding displacement vector field. Thus (3.1) becomes

∇ ·Dn=σn, (3.6)

the Maxwell equation for this electrostatic analog problem.
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At infinity, φ(∞)= 0. In accordance with (3.4)–(3.5), we also have
Dn(∞)=0. Hence the integration of (3.6) leads to the total external elec-
trostatic charge to be also zero; i.e.,

∫
σn(q) d

Nq=0 (3.7)

which is the same result given by (2.26) for the determination of En.
Because the dielectric constant κ(q) in this analog problem is zero at q=
∞, the dielectric media becomes a perfect dia-electric at ∞. Thus, the
equation of zero total charge, given by (3.7), may serve as a much sim-
plified model of charge confinement, analogous to color confinement in
quantum chromodynamics.

We note that (3.1) can also be derived from a minimal principle by
defining

I (fn(q))≡
∫ {

1
4
κ(∇fn)2 −σnfn

}
dNq. (3.8)

Because of (3.7), the functional I (fn(q)) is invariant under

fn(q)→fn(q)+ constant. (3.9)

Since the quadratic part of I (fn(q)) is the integral of the positive defi-
nite 1

4κ(∇fn)2, the curvature of I (fn(q)) in the functional space fn(q) is
always positive. Hence, I (fn(q)) has a minimum, and that minimum deter-
mines a unique electrostatic field − 1

2∇fn, as we shall see. To establish the
uniqueness, let us assume two different ∇fn, both satisfy (3.1), with the
same κ=φ2 and the same σn; their difference would then satisfy (3.1) with
a zero external charge distribution. For σn= 0, the minimum of I (fn(q))
is clearly zero with the corresponding ∇fn=0. To derive fn(q) from ∇fn,
there remains an additive constant at each iteration, as already noted in
(2.23). As we shall discuss in the next section, this arbitrariness allows us
the freedom to derive different types of convergent series.

We note that in this electrostatic analog, the problem depends only on
two input-functions: φ2(q) and the product

h(q)φ2(q). (3.10)

The original potential V (q) no longer appears explicitly. Consider, e.g.,
a system of particles with electric charges. For configurations when the
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Coulomb energy V (q) is attractive and near its singularity, we have good
knowledge about the wave amplitude ψ(q), which is large but regular. The
same should be true for a good trial function φ(q). In accordance with
(1.12), we expect

h(q) small, when ψ is large. (3.11)

For configurations when ψ is small, so should be φ. Thus, a good trial
function φ would result in a small hφ2 everywhere even though h may not.

When N =1, we may denote the coordinate (2.2) by a single x. Cor-
respondingly (3.5) and (3.6) become

Dn=−1
2
κ
dfn

dx
(3.12)

and
dDn

dx
=σn(x). (3.13)

Since Dn(∞)=0, we have

Dn(x)=−
∞∫

x

σn(z)dz (3.14)

and therefore

fn(x)=fn(∞)−2

∞∫

x

φ−2(y)dy

∞∫

y

σn(z)dz (3.15)

with
σn(x)= (h(x)−En)φ2(x)fn−1(x), (3.16)

which satisfies
∞∫

−∞
σn(x)dx=0. (3.17)

Therefore,

Dn(−∞)=Dn(∞)=0 (3.18)

and
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fn(∞)−fn(−∞)=2

∞∫

−∞
φ−2(y)dy

∞∫

y

σn(z)dz. (3.19)

When N >1, for radially symmetric problems we have

h=h(r), φ2 =κ(r) (3.20)

where

r2 =q2
1 +q2

2 +· · ·+q2
N. (3.21)

Likewise ψ , ψn and σn are all functions of r only. The radial component
of Dn is

(Dn)r =−1
2
κ(r)

dfn(r)

dr
. (3.22)

Correspondingly, (3.6) becomes

1
rN−1

d

dr

(
rN−1(Dn)r

)
=σn(r) (3.23)

with

σn(r)= (h(r)−En)φ2(r)fn−1(r).

Hence,

(Dn)r =− 1
rN−1

∞∫

r

zN−1σn(z) dz (3.24)

and on account of (3.22),

fn(r)=fn(∞)−
∞∫

r

2 dy
yN−1φ2(y)

∞∫

y

zN−1σn(z) dz. (3.25)

Assuming as r→∞,

φ2(r)→a e−br
l

(3.26)
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with a, b and l all positive constants. We assume

l >2. (3.27)

In accordance with (3.16), as r→∞

σn(r)→ c e−br
l

, (3.28)

where

c= (h(∞)−En) a fn−1(∞). (3.29)

By partial integrations, we see that as r→∞,

fn(r)→fn(∞)− 2
b

(h(∞)−En)fn−1(∞)

l(l−2)rl−2

[
1+O

(
1
brl

)]
. (3.30)

When the dimension N = 1, the same expression applies, with r replaced
by x.

Because of (3.7). in the N >1 radially symmetric case we have

∞∫

0

rN−1σn(r) dr=0, (3.31)

therefore (3.25) is identical to

fn(r)=fn(0)−
r∫

0

2 dy
yN−1φ2(y)

y∫

0

zN−1σn(z) dz. (3.32)

When N = 1 and V (x) is an even function of x, (3.32) applies with the
replacement of r by x; if V (x) is not an even function then we have, from
(3.15) and (3.19),

fn(x)=fn(−∞)−2

x∫

−∞
φ−2(y)dy

y∫

−∞
σn(z) dz. (3.33)

For an arbitrary N > 1 dimensional radially non-symmetric problem,
the general solution of the electrostatic analog problem can no longer
be reduced to simple quadratures. Thus, numerical analysis may become
important. In that case, the minimal principle using the functional I (f (q))
given by (3.8) may be of some practical use.
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4. HIERARCHY THEOREM

In this section we restrict our discussions to either (i) the N -dimen-
sional radially symmetric case in which the functions V in (2.1) and h in
(2.9) are

V =V (r) and h=h(r) (4.1)

where r2 =q2
1 +q2

2 +· · ·+q2
N as in (3.21), or (ii) the one-dimensional case

(3.12)–(3.17) with even functions

V (x)=V (−x) and h(x)=h(−x). (4.2)

In the latter case, we need only to consider the region

x≡ r�0. (4.3)

Thus, we need only to consider (i), since the N -dimensional radially sym-
metric solution (3.25) reduces to the one-dimensional case (3.15), with N=
1 and r replaced by x. Furthermore, we assume h(r) to satisfy at all finite
r >0,

h(r)>0 and h′(r)<0; (4.4)

at infinity,

h(∞)=0. (4.5)

Throughout the paper, ′ denotes d
dr

. An example of such h(r) is given in
Appendix A for the quartic potential problem (1.3).

In accordance with (3.25), each nth iterative solution fn(r) carries an
independent additive constant. In the following, we differentiate two sets
of sequences, labelled A and B, satisfying different boundary conditions:

fn(∞)=1 for all n in Case (A) (4.6)

or

fn(0)=1 for all n in Case (B). (4.7)
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Thus, by using (3.25) or (3.32) we have in Case (A)

fn(r)=1−2
∫ ∞

r

y−N+1φ−2(y)dy

∫ ∞

y

zN−1φ2(z)(h(z)−En)fn−1(z)dz,

(4.8A)

and in Case (B)

fn(r)=1−2
∫ r

0
y−N+1φ−2(y)dy

∫ y

0
zN−1φ2(z)(h(z)−En)fn−1(z)dz.

(4.8B)

In both cases, En is determined by the corresponding fn−1(r) through
(2.22); i.e.,

En= [h fn−1]/[fn−1] (4.9)

in which [F ] of any function F(r) is defined to be

[F ]=
∫ ∞

0
rN−1φ2(r)F (r)dr. (4.10)

It is convenient to introduce χ(r) defined by

χ(r)≡ r(N−1)/2φ(r). (4.11)

Thus, (4.10) becomes

[F ]=
∫ ∞

0
χ2(r)F (r)dr. (4.12)

Let ρn(r), K(r) and Dn(r) be related to σn(r), κ(r) and (Dn)r of (3.2),
(3.20) and (3.22) by

ρn(r)= rN−1σn(r)= (h(r)−En)χ2(r)fn−1(r), (4.13)

K(r)= rN−1κ(r)=χ2(r), (4.14)

and

Dn(r)= rN−1(Dn)r =−1
2
K(r)f ′

n(r). (4.15)
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Correspondingly, in Case (A), (4.8A) can be written as

fn(r)=1−2
∫ ∞

r

χ−2(y)dy

∫ ∞

y

χ2(z)(h(z)−En)fn−1(z)dz, (4.16A)

and in Case (B), (4.8B) becomes

fn(r)=1−2
∫ r

0
χ−2(y)dy

∫ y

0
χ2(z)(h(z)−En)fn−1(z)dz. (4.16B)

Because of (3.23), we have

D′
n(r)=ρn(r) (4.17)

and therefore

Dn(r)=−
∫ ∞

r

ρn(z)dz=−
∫ ∞

r

(h(z)−En)χ2(z)fn−1(z)dz. (4.18)

From (3.7),

∫ ∞

0
ρn(r)dr=0 (4.19)

which leads to

Dn(r)=
∫ r

0
ρn(z)dz=

∫ r

0
(h(z)−En)χ2(z)fn−1(z)dz. (4.20)

These two expressions of Dn(r), (4.18) and (4.20), are valid for both cases
(A) and (B). Let rn be defined by

h(r)−En=0 at r= rn. (4.21)

Since h′(r)< 0, (4.21) has one and only one solution, with h(r)−En neg-
ative for r >rn and positive for r <rn. Thus, if

fn−1(r)>0 (4.22)

for all r >0, we have from (4.18) and (4.20)

Dn(r)>0 (4.23)
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and therefore, on account of (4.15),

f ′
n(r)<0. (4.24)

In Case (A), because of fn(∞)=1, (4.24) leads to

fn(0)>fn(r)>fn(∞)=1. (4.25A)

Since for n= 0, f0(r)= 1, (4.22)–(4.25A) are valid for n= 1; by induction
these expressions also hold for all n; in Case (A), their validity imposes
no restriction on the magnitude of h(r). In Case (B) we assume h(r) to
be not too large, so that (4.16B) is consistent with

fn(r)>0 for all r

and therefore

fn(0)=1>fn(r)>fn(∞)>0. (4.25B)

As we shall see, these two boundary conditions (A) and (B) produce
sequences that have very different behavior. Yet, they also share a number
of common properties.

Hierarchy Theorem. (A) With the boundary condition fn(∞)= 1, we
have for all n

En+1>En (4.26)

and

d

dr

(
fn+1(r)

fn(r)

)
<0 at any r >0. (4.27)

Thus, the sequences {En} and {fn(r)} are all monotonic, with

E1<E2<E3< · · · (4.28)

and

1<f1(r)<f2(r)<f3(r)< · · · (4.29)
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at all finite r.
(B) With the boundary condition fn(0)= 1, we have for all odd n=

2m+1 an ascending sequence

E1<E3<E5< · · · (4.30)

but for all even n=2m, a descending sequence

E2>E4>E6> · · · , (4.31)

furthermore, between any even n=2m and any odd n=2l+1

E2m>E2l+1. (4.32)

Likewise, at any r, for any even n=2m

d

dr

(
f2m+1(r)

f2m(r)

)
<0, (4.33)

whereas for any odd n=2l+1

d

dr

(
f2l+2(r)

f2l+1(r)

)
>0. (4.34)

The proof of the hierarchy theorem is given in Appendix B. The hier-
archy theorem was discussed in our earlier papers for one-dimensional
problems (18,19). The extension to the N -dimensional radially symmetric
case is new. As we shall also discuss in Appendix B, the lowest eigenvalue
E of the Hamiltonian T +V is the limit of the sequence {En} with

En=E0 −En. (4.35)

Thus, the boundary condition fn(∞)=1 yields a sequence, in accordance
with (4.28),

E1>E2>E3> · · ·>E (4.36)

with each member En an upper bound of E, similar to the usual varia-
tional method.
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On the other hand, with the boundary condition fn(0)=1, while the
sequence of its odd members n= 2l + 1 yields a similar one, like (4.36),
with

E1>E3>E5> · · ·>E, (4.37)

its even members n=2m satisfy

E2<E4<E6< · · ·<E. (4.38)

It is unusual to have an iterative sequence of lower bounds of the eigen-
value E. Together, these sequences may be quite efficient to pinpoint the
limiting E.

In Appendix C, we discuss the comparison between the iterative solu-
tion and perturbative series for some simple examples.

5. TRIBUTE

This paper is based on my joint work with Richard Friedberg. It was
a pleasure for me to present the main body of the paper at the Number
and Nature Symposium held on December 17–18, 2004 at the Rockefeller
University, as a celebration for Mitchell J. Feigenbaum’s 60th birthday. In
the Chinese tradition, 60 is very special. It signifies the successful comple-
tion of one’s first cycle, and the fresh beginning of a new second cycle.

Because China has no indigenous religion, there is no origin of refer-
ence in the Chinese calender, nothing equivalent to BC or AD. All Chi-
nese years are labelled cyclically, modulus sixty.

In Chinese calender, each year is designated by two indices. The first
index runs cyclically from 1 to 10, with each number represented by a
different word shown in the first column of Chinese characters in Fig. 1.
We may translate the first character at the top of that column as alpha
(for 1) and the second character as beta (for 2), then gamma (for 3), . . .
until kappa (for 10); after kappa, we have alpha, beta, . . . again. The sec-
ond column of Chinese characters has 12 words, each for a different ani-
mal. In figure 1, the year 1944, when Mitchell was born is designated
(Alpha-Monkey), the next year 1945 is (Beta-Chicken), . . . ; 10 years later,
the first index for 1954 becomes again alpha, but the second index is
horse; 2 years later for 1956, the first (number) index is gamma, but the
second (animal) index becomes monkey again. It takes 1

2 ·10 ·12=60 years
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Fig. 1. Chinese calender is cyclic, modulus sixty.

to complete the cycle. This year 2004 is like 1944, the Alpha-Monkey year
and Mitchell is now in his new cycle, starting a new beginning.

The most beloved story in China is the book “Monkey” by Wu
Cheng-En written in the 16th century. It is about an immortal Monkey-
King of Chaos. The translation was by Arthur Waley (Fig. 2) in 1943, per-
haps anticipating that 1944 was the beginning of Mitchell’s Alpha-Monkey
cycle. To celebrate 2004, the beginning of Mitchell’s newest cycle, Fig. 3
is a drawing of mine, entitled “Monkey King the Thinker”. All of us are
looking forward to this new cycle with our very best wishes.
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Fig. 2. One of the most beloved novels in China.

Fig. 3. “Monkey King the Thinker” by T. D. Lee (2004) (color online).

APPENDIX A: CONSTRUCTION OF TRIAL FUNCTIONS

A.1. A New Formulation of Perturbative Expansion

As mentioned in Section 1, in many problems of interest, perturbat-
ive expansion lead to asymptotic series. Nevertheless, the first few terms of
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such an expansion could provide important insight to what a good trial
function might be. For our purpose, a particularly convenient way is to
follow the method developed in refs. 15 and 16. As we shall see, in this
new method to each order of the perturbation, the wave function is always
expressible in terms of a single line-integral in the N -dimensional coordi-
nate space, which can be readily used for the construction of the trial wave
function.

We begin with the Hamiltonian H in its standard form (2.1)–(2.3).
Assume V (q) to be positive definite, and choose its minimum to be at
q=0, with

V (q)�V (0)=0. (A.1)

Introduce a scale factor g2 by writing

V (q)=g2v(q) (A.2)

and correspondingly

ψ(q)= e−gS(q). (A.3)

Thus, the Schroedinger equation (2.4) becomes

(
− 1

2
∇2 +g2v(q)

)
e−gS(q)=Ee−gS(q), (A.4)

where, as before, q denotes q1, q2, . . . , qN and ∇ the corresponding gradi-
ent operator. Hence S(q) satisfies

−1
2
g2(∇S)2 + 1

2
g∇2S+g2v=E. (A.5)

Considering the case of large g, we expand

S(q)=S0(q)+g−1S1(q)+g−2S2(q)+· · · (A.6)

and

E=gE0 +E1 +g−1E2 +· · · . (A.7)
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Substituting (A.6)–(A.7) into (A.5) and equating the coefficients of g−n on
both sides, we find

(∇S0)
2 = 2v,

∇S0 ·∇S1 = 1
2

∇2S0 −E0, (A.8)

∇S0 ·∇S2 = 1
2

[∇2S1 − (∇S1)
2]−E1,

∇S0 ·∇S3 = 1
2

[∇2S2 −2 ∇S1 ·∇S2]−E2,

etc. In this way, the second order partial differential equation (A.5) is
reduced to a series of first order partial differential equations (A.8). The
first of this set of equations can be written as

1
2

[∇S0(q)]
2 −v(q)=0+ . (A.9)

As noted in ref. 15, this is precisely the Hamilton–Jacobi equation
of a single particle with unit mass moving in a potential “−v(q)” in the
N-dimensional q-space. Since q=0 is the maximum of the classical poten-
tial energy function −v(q), for any point q �= 0 there is always a classical
trajectory with a total energy 0+, which begins from q=0 and ends at the
other point q �= 0, with S0(q) given by the corresponding classical action
integral. Furthermore, S0(q) increases along the direction of the trajectory,
which can be extended beyond the selected point q �= 0, towards ∞. At
infinity, it is easy to see that S0(q)=∞, and therefore the corresponding
wave amplitude e−gS0(q) is zero. To solve the second equation in (A.8), we
note that, in accordance with (A.1)–(A.2) at q = 0, ∇S0 ∝ v

1
2 (0)= 0. By

requiring S1(q) to be analytic at q=0, we determine

E0 = 1
2
(∇2S0)at q=0. (A.10)

It is convenient to consider the surface

S0(q)= constant; (A.11)

its normal is along the corresponding classical trajectory passing through
q. Characterize each classical trajectory by the S0-value along the trajec-
tory and a set of N −1 angular variables

α= (α1(q), α2(q), . . . , αN−1(q)), (A.12)
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so that each α determines one classical trajectory with

∇αj ·∇S0 =0, (A.13)

where

j =1,2, . . . ,N −1. (A.14)

(As an example, we note that as q → 0, v(q)→ 1
2

∑
i

ω2
i q

2
i and therefore

S0 → 1
2

∑
i

ωiq
2
i . Consider the ellipsoidal surface S0 = constant. For S0 suffi-

ciently small, each classical trajectory is normal to this ellipsoidal surface.
A convenient choice of α could be simply any N−1 orthogonal paramet-
ric coordinates on the surface.) Each α designates one classical trajectory,
and vice versa. Every (S0, α) is mapped into a unique set (q1, q2, . . . , qN)

with S0 �0 by construction. In what follows, we regard the points in the
q-space as specified by the coordinates (S0, α). Depending on the problem,
the mapping (q1, q2, . . . , qN)→ (S0, α) may or may not be one-to-one. We
note that, for q near 0, different trajectories emanating from q=0 have to
go along different directions, and therefore must associate with different α.
Later on, as S0 increases each different trajectory retains its initially differ-
ent α-designation; consequently, using (S0, α) as the primary coordinates,
different trajectories never cross each other. The trouble-some complica-
tions of trajectory-crossing in q-space is automatically resolved by using
(S0, α) as coordinates. Keeping α fixed, the set of first order partial differ-
ential equations can be further reduced to a set of first order ordinary
differential equations, which are readily solvable, as we shall see.

Write

S1(q)=S1(S0, α), (A.15)

the second line of (A.8) becomes

(∇S0)
2
(
∂S1

∂S0

)

α

= 1
2
∇2S0 −E0, (A.16)

and leads to, besides (A.10), also

S1(q)=S1(S0, α)=
∫ S0

0

dS0

(∇S0)
2

[
1
2
∇2S0 −E0

]
, (A.17)
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where the integration is taken along the classical trajectory of constant α.
Likewise, the third, fourth and other lines of (A.8) lead to

E1 = 1
2

[∇2S1 − (∇S1)
2]at q=0, (A.18)

S2(q) = S2(S0, α)=
S0∫

0

dS0

(∇S0)
2

{
1
2

[∇2S1 − (∇S1)
2]−E1

}
, (A.19)

E2 = 1
2

[
∇2S2 −2(∇S1) · (∇S2)

]
at q=0

, (A.20)

S3(q) = S3(S0, α)=
S0∫

0

dS0

(∇S0)
2

{
1
2

[∇2S2 −2(∇S1) · (∇S2)]−E2

}
,

(A.21)

etc. These solutions give the convenient normalization convention at q=0,

S(0)=0

and

e−S(0)=1. (A.22)

Remarks
(i) As an example, consider an N -dimensional harmonic oscillator with

V (q)= g2

2
(q2

1 +q2
2 +· · ·+q2

N). (A.23)

From (A.2), one sees that the Hamilton–Jacobi equation (A.9) is for a par-
ticle moving in a potential given by

−v(q)=−1
2
(q2

1 +q2
2 +· · ·+q2

N). (A.24)

Thus, for any point q �= 0 the classical trajectory of interest is simply a
straight line connecting the origin and the specific point, with the action

S0(q)= 1
2
(q2

1 +q2
2 +· · ·+q2

N). (A.25)
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The corresponding energy is, in accordance with (A.10),

E0 = N

2
. (A.26)

By using (A.8), one can readily show that E1 =E2 =· · ·=0 and S1 =S2 =
· · · = 0. The result is the well known exact answer with the groundstate
wave function for the Schroedinger equation (A.4) given by

e−gS(q)= exp [−g
2
(q2

1 +q2
2 +· · ·+q2

N)] (A.27)

and the corresponding energy

E= N

2
g. (A.28)

(ii) From this example, it is clear that the above expressions (A.6)–(A.8)
are not the well-known WKB method. The new formalism uses −v(q) as
the potential for the Hamilton–Jacobi equation, and its “classical” trajec-
tory carries a 0+ energy; consequently, unlike the WKB method, there is
no turning point along the classical trajectory, and the formalism is appli-
cable to arbitrary dimensions.

A.2. Trial Function for the Quantum Double-well Potential

To illustrate how to construct a trial function, consider the quartic
potential (1.3) in one dimension with degenerate minima. Set a = 1, we
have

V (x)= 1
2
g2(x2 −1)2. (A.29)

The corresponding Schroedinger equation is
(

−1
2
d2

dx2
+ 1

2
g2(x2 −1)2

)
ψ(x)=Eψ(x), (A.30)

where, as before, ψ(x)= e−gS(x) is the groundstate wave function and E

its energy. Using the expansions (A.6)–(A.7) and following the steps (A.8),
(A.10) and (A.15)–(A.21), we find the well-known perturbative series

S0(x)= 1
3
(x−1)2(x+2), S1(x)= ln

x+1
2

, S2(x)= 3
16

− x+2
4(x+1)2

, · · ·
(A.31)
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and

E0 =1, E1 =−1
4
, E2 =− 9

64
, · · · (A.32)

Both expansions S=S0 +g−1S1 +g−2S2 +· · · and E=gE0 +E1 +g−1E2 +
· · · are divergent, furthermore, at x=−1 and for n�1, each Sn(x) is infi-
nite. The reflection x → −x gives a corresponding asymptotic expansion
Sn(x)→ Sn(−x), in which each Sn(−x) is regular at x= −1, but singular
at x=+1.

As noted in Section 1, for g large, the first few terms of the pertur-
bative series (with (A.31) for x positive and the corresponding expansion
Sn(x)→ Sn(−x) for x negative) give a fairly good description of the true
wave function ψ(x) whenever ψ(x) is large (i.e. for x near ±1). However,
for x near zero, when ψ(x) is exponentially small, the perturbative series
becomes totally unreliable. This suggests the use of first few terms of the
perturbative series for regions whenever ψ(x) is expected to be large. In
regions where ψ(x) is exponentially small, simple interpolations by hand
may already be adequate for a trial function, as we shall see. Since the
quartic potential (A.29) is even in x, so is the groundstate wave function;
likewise, we require the trial function φ(x) also to satisfy φ(x)=φ(−x). At
x=0, we require

(
dφ

dx

)

x=0
=0. (A.33)

To construct φ(x), we start with the first two functions S0(x) and S1(x) in
(A.31). Introduce, for x�0,

φ+(x)≡ e−gS0(x)−S1(x)=
(

2
1+x

)
e−gS0(x) (A.34)

and

φ−(x)≡ e−gS0(−x)−S1(x)=
(

2
1+x

)
e−

4
3 g+gS0(x). (A.35)

In order to satisfy (A.33), we define

φ(x)=φ(−x)≡
{
φ+(x)+ g−1

g+1φ−(x) for 0�x <1

(1+ g−1
g+1e

− 4
3 g)φ+(x) for x >1

(A.36)
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Thus, by construction (A.33) is satisfied. Furthermore, φ(x) is continuous
everywhere, for x from −∞ to ∞, and so is its derivative.

By differentiating φ+(x) and φ(x), we see that they satisfy

(T +V +u)φ+ =gφ+ (A.37)

and

(T +V +h)φ=gφ, (A.38)

where

u(x)= 1
(1+x)2 (A.39)

and

h(x)=h(−x) (A.40)

with, for x�0

h(x)=u(x)+ ĝ(x) (A.41)

where

ĝ(x)=
⎧⎨
⎩

2g (g−1)e2gS0(x)− 4
3 g

(g+1)+(g−1)e2gS0(x)− 4
3 g

for 0�x <1

0 for x >1.
(A.42)

Note that for g>1, ĝ(x) is positive, and has a discontinuity at x=1. Fur-
thermore, for x positive both u(x) and ĝ(x) are decreasing functions of x.
Therefore, h(x) also satisfies (4.4) for x= r >0.

APPENDIX B: PROOF OF THE HIERARCHY THEOREM

In this appendix, we give the proof of the Hierarchy Theorem stated
in Section 4. The discussion follows very closely the one given for the one-
dimensional case in ref. 19. We first establish several lemmas applicable to
both boundary conditions (4.6) and (4.7): (A) fn(∞)=1 and (B) fn(0)=1.
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Lemma 1. For any pair fm(r) and fl(r)

(i) if at all r,
d

dr

(
fm(r)

fl(r)

)
<0 then Em+1>El+1, (B.1)

and

(ii) if at all r,
d

dr

(
fm(r)

fl(r)

)
>0 then Em+1<El+1. (B.2)

Proof. According to (4.9)

Em+1[fm]= [h fm]. (B.3)

Also by definition (4.10),

El+1[fm]= [El+1 fm]. (B.4)

Their difference gives

(Em+1 −El+1)[fm]= [(h−El+1) fm]. (B.5)

From (B.3),

0= [(h−El+1) fl ]. (B.6)

Let rl+1 be defined by (4.21); i.e., at r= rl+1,

h(rl+1)=El+1. (B.7)

Multiplying (B.5) by fl(rl+1) and (B.6) by fm(rl+1) and taking their differ-
ence, we have

fl(rl+1)(Em+1 −El+1)[fm]= [(h−El+1) (fm(r)fl(rl+1)−fl(r)fm(rl+1))],

(B.8)

in which the unsubscripted r acts as a dummy variable; thus [fm(r)] means
[fm] and [fm(rl+1)] means fm(rl+1) · [1], etc.
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(i) If (fm(r)/fl(r))′<0, then for r <rl+1

fm(r)

fl(r)
>
fm(rl+1)

fl(rl+1)
. (B.9)

In addition, since in accordance with (4.4) and (B.7), h′(r) < 0 and
h(rl+1)=El+1, we also have for r <rl+1

h(r)>El+1. (B.10)

Thus, the function inside the square bracket on the right hand side of
(B.8) is positive for r < rl+1. Also, the inequalities (B.9) and (B.10) both
reverse their signs for r > rl+1. Consequently, the right hand side of (B.8)
is positive definite, and so is its left side. Therefore, on account of (4.25A)–
(4.25B), (B.1) holds.

(ii) If (fm(r)/fl(r))′>0, we see that for r <rl+1, (B.9) reverses its sign
but not (B.10). A similar reversal of sign happens for r > rl+1. Thus, the
right hand side of (B.8) is now negative definite and therefore Em+1<El+1.
Lemma 1 is proved.

Let

η=η(ξ) (B.11)

be a single valued differentiable function of ξ in the range between a and
b with

0�a� ξ �b (B.12)

and with

η(a)�0. (B.13)

Lemma 2. (i) The ratio η/ξ is a decreasing function of ξ for
a<ξ <b if

dη

dξ
� η

ξ
at ξ =a (B.14)

and

d2η

dξ2
<0 for a<ξ <b. (B.15)
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(ii) The ratio η/ξ is an increasing function of ξ for a<ξ <b if

dη

dξ
� η

ξ
at ξ =a (B.16)

and

d2η

dξ2
>0 for a<ξ <b. (B.17)

Proof. Define

L≡ ξ dη
dξ

−η (B.18)

to be the Legendre transform L(ξ). We have

dL

dξ
= ξ d

2η

dξ2
(B.19)

and

d

dξ

(
η

ξ

)
= L

ξ2
. (B.20)

Since (B.14) says that L(a)�0 and (B.15) says that dL
dξ
< 0 for a < ξ <b,

these two conditions imply L(ξ)<0 for a<ξ <b, which proves (i) in view
of (B.20). The proof of (ii) is the same, but with inequalities reversed.

Lemma 3. For any pair fm(r) and fl(r)

(i) if over all r,

d

dr

(
fm(r)

fl(r)

)
<0 then at all r,

d

dr

(Dm+1(r)

Dl+1(r)

)
<0, (B.21)

and (ii) if over all r,

d

dr

(
fm(r)

fl(r)

)
>0 then at all r,

d

dr

(Dm+1(r)

Dl+1(r)

)
>0. (B.22)



Low-lying States of the Schroedinger Equation 1045

Proof. From (4.18) and (4.20), we have

D′
m+1(r)= (h(r)−Em+1) χ

2(r) fm(r) (B.23)

and

D′
l+1(r)= (h(r)−El+1) χ

2(r) fl(r). (B.24)

Define

ξ =Dl+1(r) and η=Dm+1(r). (B.25)

In any local region of r where D′
l+1(r) �=0, we can regard η=η(ξ) through

η(r)=η(ξ(r)). Hence, we have

dη

dξ
= D′

m+1(r)

D′
l+1(r)

=R(r)fm(r)
fl(r)

, (B.26)

where

R(r)= h(r)−Em+1

h(r)−El+1
, (B.27)

and

d

dξ

(
dη

dξ

)
= 1

D′
l+1

(
D′
m+1

D′
l+1

)′
= 1

D′
l+1

(
R
fm

fl

)′

= 1
D′
l+1

(
R′ fm
fl

+R
(
fm

fl

)′)
(B.28)

where

R′(r)= Em+1 −El+1

(h(r)−El+1)
2
h′(r). (B.29)

(i) If (fm/fl)′<0, from Lemma 1, we have

Em+1>El+1. (B.30)
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From h′(r)<0 and the definition of rm+1 and rl+1, given by (B.7), we have

rm+1<rl+1, (B.31)

h(rm+1)=Em+1 and h(rl+1)=El+1. (B.32)

We note that from (4.18) and (4.20) Dm+1(r) and Dl+1(r) are both
positive continuous functions of r, varying from at r=0,

Dm+1(0)=Dl+1(0)=0 (B.33)

to at r=∞

Dm+1(∞)=Dl+1(∞)=0 (B.34)

with their maxima at rm+1 for Dm+1(r) and rl+1 for Dl+1(r), since in
accordance with (B.23)–(B.24) and (B.32),

D′
m+1(rm+1)=0 and D′

l+1(rl+1)=0. (B.35)

From (B.29)–(B.30), we see that R′(r) is always < 0. Furthermore, from
(B.27), we also find that the function R(r) has a discontinuity at r= rl+1.
At r=0, R(0) satisfies

0<R(0)= h(0)−Em+1

h(0)−El+1
<1. (B.36)

As r increases from 0, R(r) decreases from R(0), through

R(rm+1)=0, (B.37)

to −∞ at r=rl+1−; R(r) then switches to +∞ at r=rl+1+, and continues
to decrease as r increases from rl+1+. At r=∞, R(r) becomes

R(∞)= Em+1

El+1
>1. (B.38)
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Table I. The Signs of D′
m+1(r ), D′

l+1(r ), h(r ) − Em+1, h(r ) − El+1, R (r ) and R ′(r ) in

the Three Regions defined by (B.39), when Em+1>El+1

Region D′
m+1(r) D′

l+1(r) h(r)−Em+1 h(r)−El+1 R(r) R′(r)

I >0 >0 >0 >0 >0 <0
II <0 >0 <0 >0 <0 <0
III <0 <0 <0 <0 >0 <0

It is convenient to divide the r-axis into three regions:

(I) 0<r <rm+1,

(II) rm+1<r <rl+1, (B.39)

(III) rl+1<r.

The signs of D′
m+1, D′

l+1, R and R′ in these regions are summarized
in Table I. Assuming (fm/fl)

′ < 0 we shall show the validity of (B.21),
(Dm+1/Dl+1)

′<0, in each of these three regions.
Since

El+1<h(r)<Em+1 in (II), (B.40)

Dm+1(r) is decreasing and Dl+1(r) is increasing; it is clear that (B.21)
holds in II.

In each of regions (I) and (III), we have R(r) > 0 from (B.27) and
R′(r) < 0 from (B.29). Since (fm/fl)

′ is always negative by the assump-
tion in (B.21), both terms inside the big parenthesis of (B.28) are nega-
tive; hence the same (B.28) states that d2η/dξ2 has the opposite sign from
D′
l+1. From the sign of D′

l+1 listed in Table I, we see that

d2η

dξ2
<0 in (I) (B.41)

and

d2η

dξ2
>0 in (III). (B.42)

Within each region, η=Dm+1(r) and ξ=Dl+1(r) are both monotonic in r;
therefore, η is a single-valued function of ξ and we can apply Lemma 2.
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In (I), at r = 0, both Dm+1(0) and Dl+1(0) are 0 according to (4.20), but
their ratio is given by

Dm+1(0)
Dl+1(0)

= D′
m+1(0)

D′
l+1(0)

. (B.43)

Therefore,

(
dη

dξ

)

r=0
=
(
η

ξ

)

r=0
. (B.44)

Furthermore, from (B.41), d2η

dξ2 < 0 in (I), it follows from Lemma 2, case
(i), the ratio η/ξ is a decreasing function of ξ . Since ξ ′ = D′

l+1 is > 0 in
(I) according to (B.24), we have

d

dr

(Dm+1

Dl+1

)
<0 in (I). (B.45)

In (III), at r = ∞, both Dm+1(∞) and Dl+1(∞) are 0 according to
(B.34). Their ratio is

Dm+1(∞)

Dl+1(∞)
= D′

m+1(∞)

D′
l+1(∞)

, (B.46)

which gives at r=∞,

(
dη

dξ

)

r=∞
=
(
η

ξ

)

r=∞
. (B.47)

As r decreases from r = ∞ to r = rl+1, from (B.42) we have d2η

dξ2 > 0 in
(III). It follows from Lemma 2, case (ii), η/ξ is an increasing function of
ξ . Since ξ ′ =D′

l+1 is <0, because r >rl+1, we have

d

dr

(Dm+1

Dl+1

)
<0 in (III). (B.48)

Thus, we prove case (i) of Lemma 3. Case (ii) of Lemma 3 follows from
case (i) through the interchange of the subscripts m and l. Lemma 3 is
then established.
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Lemma 4. Take any pair fm(r) and fl(r)

(A) For the boundary condition fn(∞)=1, if at all r,

d

dr

(
fm(r)

fl(r)

)
<0 then at all r,

d

dr

(
fm+1(r)

fl+1(r)

)
<0; (B.49A)

therefore, if at all r,

d

dr

(
fm(r)

fl(r)

)
>0 then at all r,

d

dr

(
fm+1(r)

fl+1(r)

)
>0. (B.50A)

(B) For the boundary condition fn(0)=1, if at all r,

d

dr

(
fm(r)

fl(r)

)
<0 then at all r,

d

dr

(
fm+1(r)

fl+1(r)

)
>0; (B.49B)

therefore, if at all r,

d

dr

(
fm(r)

fl(r)

)
>0 then at all r,

d

dr

(
fm+1(r)

fl+1(r)

)
<0. (B.50B)

Proof. Define

ξ̂ =fl+1(r) and η̂=fm+1(r). (B.51)

From (4.15) we see that

dη̂

dξ̂
= f ′

m+1(r)

f ′
l+1(r)

= Dm+1(r)

Dl+1(r)
(B.52)

and

d

dξ̂

(
dη̂

dξ̂

)
= 1
f ′
l+1

d

dr

(Dm+1(r)

Dl+1(r)

)
. (B.53)

(A) In this case fn(∞)=1 for all n. Thus, at r=∞, ξ̂ =fl+1(∞)=1, η̂=
fm+1(∞)=1, and their ratio

(
η̂

ξ̂

)

r=∞
=1. (B.54)
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At the same point r=∞, in accordance with (4.18), Dl+1(∞)=Dm+1(∞)=
0, but their ratio is, on account of h(∞)=0 and (B.1) of Lemma 1,

Dm+1(∞)

Dl+1(∞)
= D′

m+1(∞)

D′
l+1(∞)

= h(∞)−Em+1

h(∞)−El+1
= Em+1

El+1
>1, (B.55)

in which the last inequality follows from the same assumption, if (fm/fl)′<
0, shared by (B.1) of Lemma 1 and the present (B.49A) that we wish to
prove. Thus, from (B.52), at r=∞

(
dη̂

dξ̂

)

r=∞
= Em+1

El+1
>

(
η̂

ξ̂

)

r=∞
=1. (B.56)

As r decreases from ∞ to 0, ξ̂ increases from fl+1(∞)=1 to fl+1(0)>1,
in accordance with (4.24) and (4.25A). On account of (B.21) of Lemma 3,
we have (Dm+1/Dl+1)

′<0, which when combined with (B.53) and f ′
n(r)<0

leads to

d

dξ̂

(
dη̂

dξ̂

)
>0. (B.57)

Thus, by using (B.16)–(B.17) of Lemma 2, we have η̂/ξ̂ to be an increasing
function of ξ̂ ; i.e.,

d

dξ̂

(
η̂

ξ̂

)
>0. (B.58)

Because

d

dr

(
η̂

ξ̂

)
= ξ̂ ′ d

dξ̂

(
η̂

ξ̂

)
=f ′

l+1
d

dξ̂

(
η̂

ξ̂

)
(B.59)

and f ′
l+1<0, we find

d

dr

(
fm+1

fl+1

)
= d

dr

(
η̂

ξ̂

)
<0, (B.60)

which establishes (B.49A). Through the interchange of the subscripts m
and l, we also obtain (B.50A).
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Next, we turn to Case (B) with the boundary condition fn(0)=1 for
all n. Therefore at r=0,

fm+1(0)
fl+1(0)

=1. (B.61)

Furthermore from (4.15) and (4.16B), we also have f ′
m+1(0)= f ′

l+1(0)= 0
and Dm+1(0)=Dl+1(0)=0, with their ratio given by

(
dfm+1

dfl+1

)

r=0
= f ′

m+1(0)

f ′
l+1(0)

= Dm+1(0)
Dl+1(0)

= D′
m+1(0)

D′
l+1(0)

= h(0)−Em+1

h(0)−El+1
. (B.62)

From (B.1) of Lemma 1, we see that if (fm/fl)′<0, then Em+1>El+1 and
therefore

(
dfm+1

dfl+1

)

r=0
<1, (B.63)

(
η̂

ξ̂

)

r=0
=1. (B.64)

Thus,

(
dη̂

dξ̂

)

r=0
<

(
η̂

ξ̂

)

r=0
. (B.65)

Analogously to (B.18), define

L(r)≡ ξ̂ dη̂
dξ̂

− η̂=fl+1(r)
f ′
m+1(r)

f ′
l+1(r)

−fm+1(r), (B.66)

therefore

dL(r)

dr
= ξ̂ ′ dL

dξ̂
= ξ̂ ′ξ̂

d

dξ̂

dη̂

dξ̂

= ξ̂
d

dr

(
dη̂

dξ̂

)
=fl+1

d

dr

(
f ′
m+1

f ′
l+1

)
=fl+1

d

dr

(Dm+1

Dl+1

)
. (B.67)
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From (B.21) of Lemma 3, we know that if (fm/fl)′ < 0 then (Dm+1/

Dl+1)
′<0, which leads to

dL(r)

dr
<0. (B.68)

From (B.66), we have

L(r)= ξ̂
(
dη̂

dξ̂
− η̂

ξ̂

)
=fl+1(r)

(
dη̂

dξ̂
− η̂

ξ̂

)
, (B.69)

and therefore at r=0, because of (B.65),

L(0)<0. (B.70)

Combining (B.68) and (B.70), we derive

L(r)<0 for r�0. (B.71)

Multiplying (B.66) by f ′
l+1(r), we have

f ′
l+1(r)L(r) = fl+1(r)f

′
m+1(r)−fm+1(r)f

′
l+1(r)

= f 2
l+1(r)

(
fm+1(r)

fl+1(r)

)′
. (B.72)

Because f ′
l+1(r) and L(r) are both negative, it follows then

(
fm+1(r)

fl+1(r)

)′
>0,

which gives (B.49B) for Case (B), with the boundary condition fn(0)=
1. Interchanging the subscripts m and l, (B.49B) becomes (B.50B), and
Lemma 4 is established.

We now turn to the proof of the theorem stated in (4.26)–(4.34).

Proof of the Hierarchy Theorem. When n=0, we have

f0(r)=1. (B.73)
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From (4.22)–(4.24), we find for n=1

f ′
1(r)<0, (B.74)

and therefore

(f1/f0)
′<0. (B.75)

In Case (A), by using (B.49A) and by setting m= 1 and l = 0, we
derive (f2/f1)

′<0; through induction, it follows then (fn+1/fn)
′<0 for all

n. From Lemma 1, we also find En+1>En for all n. Thus, (4.26)–(4.29) are
established.

In Case (B), by using (B.75) and (B.49B), and setting m = 1 and
l = 0, we find (f2/f1)

′ > 0, which in turn leads to (f3/f2)
′ < 0, . . . , and

(4.33)–(4.34). Inequalities (4.30)–(4.32) now follow from (B.1)–(B.2) of
Lemma 1. The Hierarchy Theorem is proved.

Assuming that h(0) is finite, we have for any n

0<En <h(0). (B.76)

Therefore, each of the monotonic sequences

E1<E2<E3< · · · in (A)

E1<E3<E5< · · · in (B)

and

E2>E4>E6> · · · in (B)

converges to a finite limit E . By following the discussions in Section 5 of
ref. 18, one can show that each of the corresponding monotonic sequences
of fn(r) also converges to a finite limit f (r). The interchange of the limit
n→ ∞ and the integrations in (4.16A) completes the proof that in Case
(A) the limits E and f (r) satisfy

f (r)=1−2
∫ ∞

r

χ−2(y)dy

∫ ∞

y

χ2(z)(h(z)−E)f (z)dz. (B.77A)

As noted before, the convergence in Case (A) can hold for any large but
finite and positive h(r), provided that h′(r) is negative for r > 0. In Case
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(B), a large h(r) may yield a negative fn(r), in violation of (4.25B). There-
fore, the convergence does depend on the smallness of h(r). One has to
follow discussions similar to those given in Ref.17 to ensure that the lim-
its E and f (r) satisfy

f (r)=1−2
∫ r

0
χ−2(y) dy

∫ y

0
χ2(z)(h(z)−E)f (z) dz. (B.77B)

APPENDIX C: COMPARISON WITH PERTURBATIVE EXPANSION

C.3. A Simple Model and its Iterative Solutions

Consider the one-dimensional problem in which V , U and h of (2.1),
(2.7) and (2.9) are given by

V (x)=V (−x)=
⎧⎨
⎩

∞ |x|>L+ l
0 for l < |x|<L+ l,
− 1

2g
2 |x|<l,

(C.1)

U(x)=U(−x)=
⎧⎨
⎩

∞ |x|>L+ l,
for

0 |x|<L+ l
(C.2)

and

h(x)=U(x)−V (x)=
⎧⎨
⎩

0 |x|>l,
for

1
2g

2 |x|<l.
(C.3)

Let φ(x) and ψ(x) be the respective groundstates of

H0φ=−1
2
d2φ

dx2
+Uφ=E0φ (C.4)

and

Hψ=−1
2
d2ψ

dx2
+Vψ=Eψ. (C.5)
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As a model, (C.5) is the Schroedinger equation that we wish to solve, and
(C.4) is the equation that the trial function φ satisfies. The iterative equa-
tion (2.19) becomes

(
−1

2
d2

dx2
+U(x)−E0

)
ψn(x)= (h(x)−En)ψn−1(x). (C.6)

with ψ0 =φ(x). Since U and V are both even in x, we need only to con-
sider the region

x�0. (C.7)

Set within x <L+ l

φ(x)= cospx (C.8)

with

p(L+ l)= π

2
and E0 = p2

2
. (C.9)

Introduce, as in (2.25), fn=ψn/φ. We have in accordance with (3.1)–(3.7)

Dn(x)=−1
2
κ(x)

dfn

dx
, κ(x)=φ2(x), (C.10)

dDn

dx
=σn(x)= (h(x)−En)φ2(x)fn−1(x), (C.11)

∞∫

0

σn(x) dx=0 (C.12)

and therefore

En=

∞∫
0
hφ2fn−1dx

∞∫
0
φ2fn−1dx

. (C.13)
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One can verify that for n=1

E1 = g2

2(L+ l)
(
l+ 1

2p
sin 2pl

)
, (C.14)

D1(x)= g2

4(L+ l)

⎧⎪⎪⎨
⎪⎪⎩

(
l+ sin 2pl

2p

)(
L+ l−x− sin 2px

2p

)
, l <x <L+ l,

(
x+ sin 2px

2p

)(
L− sin 2pl

2p

)
, 0<x<l

(C.15)

and

f1(x)=
{
f1(R)+ E1

p2 [1−p(L+ l−x) tanpx], l <x <L+ l,
f1(0)− 1

p
(
g2

2 −E1)x tanpx, 0<x<l.
(C.16)

The constants f1(R) and f1(0) are related through the continuity of f1(x)

at x = l. In order to derive the general solution for fn(x), it is useful to
consider a limited region in x (either |x|<l or |x|>l) over which


n≡2(h(x)−En)= constant. (C.17)

From (C.10)–(C.11), we have

− d

dx

(
cos2 px

dfn

dx

)
=
n cos2 pxfn−1. (C.18)

Write

fn=Pn(x)+ (tanpx)Qn(x). (C.19)

We find, from (C.18),

d2

dx2
Pn+2p

d

dx
Qn=−
nPn−1

d2

dx2
Qn−2p

d

dx
Pn=−
nQn−1. (C.20)
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Thus, Pn and Qn are both nth order polynomials in x. Define

P±
n ≡ 1

2
(Pn∓ iQn)= (P∓

n )
∗. (C.21)

From (C.20), P±
n satisfies

(
d2

dx2
±2ip

d

dx

)
P±
n =−
nP±

n−1. (C.22)

It is useful to introduce a set of nth order polynomials R±
n , independent

of 
n. We require

(
d2

dx2
±2ip

d

dx

)
R±
n =−R±

n−1 (C.23)

with the boundary conditions (i) for n=0,

R±
0 (x)=1 at all x, (C.24)

and (ii) for n>0, at x=0

R±
n (0)=0. (C.25)

The solution for R±
n (x) can be further simplified by introducing a set

of nth order polynomials Rn(x|q) without the superscript + or −, but
depending on a scaling parameter q, so that

Rn(x|q)=q2nRn

(
x

q

∣∣∣∣1
)
, (C.26)

where Rn(xq |1) is an nth order polynomial of x
q

with constant coefficients.
The Rn(x|q) are related to R±

n (x) defined by (C.23)–(C.25) through

Rn(x|q) = R+
n (x) when q=q+ ≡+ i

2p ,

Rn(x|q) = R−
n (x) when q=q− ≡− i

2p .
(C.27)

Writing

u≡ x

q
and Rn

(
x

q

∣∣∣∣1
)

≡ rn(u), (C.28)
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we have

r0(u)=1, r1(u)=u, r2(u)= 1
2
u2 +u,

r3(u)= 1
6
u3 +u2 +2u, (C.29)

r4(u)= 1
24
u4 + 1

2
u3 + 5

2
u2 +5u, etc.,

correspondingly

R0(x|q)=1, R1(x|q)=qx, R2(x|q)= 1
2
q2x2 +q3x,

R3(x|q)= 1
6
q3x3 +q4x2 +2q5x, (C.30)

R4(x|q)= 1
24
q4x4 + 1

2
q5x3 + 5

2
q6x2 +5q7x, etc.

In terms of R±
n (x), the P±

n (x) that satisfies (C.22) is given by

P±
n (x) = 1

2

1
2 · · ·
nR±

n (x)

+c±1 
2
3 · · ·
nR±
n−1(x)

+c±2 
3 · · ·
nR±
n−2(x)+· · ·

+c±
n−1
nR

±
1 (x)+ c±n , (C.31)

where c±1 , c
±
2 , . . . , c

±
n are integration constants, with c±m= (c∓m)∗ for all m.

Thus for n=1, since R1(x|q)=qx,

R±
1 (x)=R1(x|q±)=R1

(
x

∣∣∣∣±
i

2p

)
=± ix

2p
. (C.32)
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According to (C.31),

P±
1 (x)=

1
2

1R

±
1 (x)+ c±1 =± ix

4p

1 + c±1 (C.33)

and from (C.21)

P1 =P+
1 +P−

1 = c+1 + c−1
and

Q1 = i(P+
1 −P−

1 )=− x

2p

1 + i(c+1 − c−1 ). (C.34)

Since


1 =2(h(x)−E1)=
⎧⎨
⎩

−2E1 l <x <L+ l,
for

g2 −2E1 0<x<l,
(C.35)

we have, in agreement with (C.16), P1 is a constant in l <x <L+ l, and a
different constant in 0<x<l. Likewise,

Q1 = E1x

p
+ constant in l <x <L+ l

(C.36)

Q1 = − 1
p

(
g2

2
−E1

)
x+ a different constant in 0<x<l.

These integration constants are determined by the continuity equations
between regions, leaving one final overall constant that is not determined.
Likewise, we can derive the solution fn(x) for any n.

If we impose the boundary condition at x=L+ l,

fn(L+ l)=1, (C.37)

then in accordance with the Hierarchy Theorem

E1<E2< · · · (C.38)

with

lim
n→∞En=E =E0 −E (C.39)

for any finite g2.
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C.4. Analyticity of E (g2)

The convergence of the perturbative series in g2 depends on, in the
complex g2 plane, the location of the nearest singularity g2

c of E(g2) to
the origin. While the simple model discussed above can be readily solved,
it is more complicated to locate the singularities of E(g2). We first dis-
cuss the exact solution of (C.5). Again we need only consider the positive

x-axis. Note that the well-depth − g2

2 has a critical value − g2
0

2 ; for g2>g2
0,

E<0, and for g2<g2
0, E>0. When g2 =g2

0, E=0 and

ψ=ψc∝
⎧⎨
⎩
L+l−x
L

l <x <L+ l,
for

cosq0x 0<x<l
(C.40)

with

q0 tan q0l= 1
L
, (C.41)

as required by the continuity of ψ ′/ψ at x= l. When g2<g2
0,

ψ ∝
⎧⎨
⎩

sin[k(L+ l−x)] l <x <L+ l,
for

cosqx 0<x<l
(C.42)

with

q tan ql=k cot kL, (C.43)

and

E= k2

2
= 1

2
(q2 −g2)>0. (C.44)

When g2>g2
0,

ψ ∝
⎧
⎨
⎩

sinh[κ(L+ l−x)] l <x <L+ l,
for

cosqx 0<x<l
(C.45)
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with

q tan ql=κ coth κL (C.46)

and

E=−κ
2

2
= 1

2
(q2 −g2)<0. (C.47)

In the limit L→∞, q0 =0, in accordance with (C.41), and therefore

g2
0 =0. (C.48)

For any g2 however small, E is negative. Solution (C.45) becomes

ψ ∝
⎧⎨
⎩
e−κx x > l,

for
cosqx x < l

(C.49)

with

E=−κ
2

2
=−1

2
(g2 −q2) (C.50)

and

κ=q tan ql. (C.51)

We examine the analyticity of E(g2) for the case L= ∞, the same
analysis can be extended to arbitrary L, but it is more complex. The sin-
gularities of E=E(g2) can be determined by setting dE

dg2 =∞; i.e., dg2

dE
=0,

which leads to, on account of E=− 1
2κ

2,

dg2

dκ2
=0. (C.52)

Because g2 =q2 +κ2 according to (C.50), (C.52) is equivalent to dq2

dκ2 +1=
0; i.e.,

dq

dκ
=−κ

q
. (C.53)
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Differentiating (C.51), we find

dκ

dq
= tan ql+ql sec2 ql, (C.54)

which, when combined with (C.53), gives

−q
κ

= tan ql+ql sec2 ql. (C.55)

Since (q/κ)= cot ql according to (C.51), (C.55) becomes

cot ql+ tan ql+ql sec2 ql=0;

i.e.,

sec2 ql(cot ql+ql)=0.

When sec2 ql=0, ql=±i∞ which is uninteresting for our purpose. Hence,
for singularities at a finite g2, we require

cot ql+ql=0, (C.56)

i.e.,

ql tan ql=−1. (C.57)

Define

z=ql. (C.58)

Our problem is then reduced to the study of zeroes of

z tan z+1=0. (C.59)

For each zero at z, there is a singularity of E(g2) in the complex g2 plane
at g2 =κ2 +q2 =q2 tan2 ql+q2; i.e., at

g2l2 = z2 tan2 z+ z2 =1+ z2. (C.60)
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(i) For z imaginary, we set z= ±iy. (C.59) becomes y tanh y = 1, which
gives for the smallest |y|∼=1.2, z∼=±1.2i and

g2l2 ∼=−0.44 . (C.61)

As will be shown below, this gives g2
c .

(ii) For z real, the nearest zeroes for (C.59) are z∼=±2.8 and correspond-
ingly

g2l2 ∼=8.8 . (C.62)

(iii) We shall now establish that in the complex g2-plane, the nearest sin-
gularity g2

c of E(g2) to the origin is given by (C.61); i.e.,

g2
c l

2 ∼=−0.44 . (C.63)

Consider the well known expansion

tan z=2z
∞∑
n=0

1

(n+ 1
2 )

2π2 − z2
.

For z near π
2 , we may write the righthand side as

2z
[

1
(π2 )

2 − z2
+

∞∑
n=1

1

(n+ 1
2 )

2π2 − z2

]

=2z
[

1
(π2 )

2 − z2
+

∞∑
n=1

(
1

(n+ 1
2 )

2π2
+ z2

(n+ 1
2 )

4π4
+· · ·

)]

=2z
[

1
(π2 )

2 − z2
+
(

1
2

− 4
π2

)
+ z2

∞∑
n=1

1

(n+ 1
2 )

4π4
+· · ·

]
. (C.64)

By using first the approximation

tan z∼=2z
[

1
(π2 )

2 − z2
+
(

1
2

− 4
π2

)]
(C.65)

and then the correction due to the successive remaining terms in (C.64),
one can readily show that (C.61) gives the smallest singularity g2

c in the
g2-plane. (Note that in this case, because L=∞, g0 =0 in accordance with
(C.48).) Thus, the perturbative series of E(g2) is convergent only if g2l2<

|g2
c |l2 ∼=0.44 . On the other hand, the iterative series of Section C.1 is con-

vergent for any finite g2.
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C.3. A Comparative Study of Different Green’s Functions

(i) Write the iterative equation (2.19) as

(H0 −E0)ψn(q)=Sn(q), (C.66)

where

Sn(q)= (h(q)−En)ψn−1(q). (C.67)

In one dimension, setting q = x and using (2.25) and (3.15)–(3.16), the
solution ψn(x) is given by

ψn(x)=ψn(∞)+
∞∫

−∞
(x|G|z)Sn(z)dz, (C.68)

where the Green’s function G is

(x|G|z)=−2φ(x)

∞∫

x

φ−2(y)dyθ(y− z)φ(z) (C.69)

with

θ(y− z)=
⎧⎨
⎩

1 z>y,

for
0 z<y,

(C.70)

and therefore

(x|G|z)=0 if z<x. (C.71)

The function (x|G|z) is one of the Sturm–Liouville family of Green’s func-
tions.(20) On the other hand, in deriving the usual perturbative series one
deals often with similar equations of the form

(H0 −λ)u(q)=v(q) (C.72)
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where λ is a parameter. Let un be the nth member of the ortho-normal set
of real eigenfunctions of H0 with eigenvalue en. We assume

∫
un(q)um(q)d

Nq= δnm=
{

0, n �=m,
1, n=m. (C.73)

Hence,

(H0 − en)un(q)=0 (C.74)

which reduces to (2.8) when n=0; i.e.,

e0 =E0 and u0 =φ. (C.75)

For λ different from any of the eigenvalues en, the general solution of
(C.72) is

u(q)=
∫
(q|G(λ)|q)v(q)dNq, (C.76)

where

(q|G(λ)|q)=
∑
n

un(q)un(q)

en−λ . (C.77)

To simplify our notations, we assume all un(q) to be real. When λ=E0 =
e0, (C.72) becomes

(H0 − e0)u(q)=v(q), (C.78)

same as (C.66). Since (H0 − e0)u0 =0, we have

∫
u0(q)v(q)d

Nq=0. (C.79)

The general solution of (C.78) is

u(q)=
∫
(q|Ĝ(λ)|q)v(q)dNq+ cu0(q) (C.80)
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with c an arbitrary constant and

(q|Ĝ(e0)|q)≡
∑
n�=0

un(q)un(q)

en− e0
. (C.81)

In the subsection (iii) below, we shall analyze the difference between G and
G, or Ĝ. Before that, we shall review the roles of G and Ĝ in the usual
perturbative formulas.
(ii) In order to solve the Schroedinger equation (2.4) perturbatively, we
begin with (2.11); i.e.,

(H0 −E0)ψ(q)= (h−E)ψ(q). (C.82)

Following the standard Brillouin–Wigner procedure, we require

∫
u0(q)ψ(q)d

Nq=
∫
φ(q)ψ(q)dNq=1. (C.83)

Define

ψ̂(q)=ψ(q)−u0(q), (C.84)

which is orthogonal to u0(q), because of (C.83). Eq. (C.82) leads to

(H0 −E0)ψ̂(q)= (h−E)(u0(q)+ ψ̂(q)), (C.85)

on account of (2.10), this gives

(H0 −E)ψ̂(q)= (h−E)u0(q)+hψ̂(q). (C.86)

Multiply (C.86) on the left by un and integrate. We have for n=0

E =
∫
u0h(u0 + ψ̂)dNq, (C.87)

the same as (2.16); for n �=0

(en−E)(n|ψ̂)=
∫
unh(u0 + ψ̂)dNq, (C.88)
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where

(n|ψ̂)≡
∫
unψ̂d

Nq. (C.89)

Introduce the sequence

ψ̂1, ψ̂2, ψ̂3, . . . (C.90)

with

(0|ψ̂l)=0 for all l�1. (C.91)

When l=1, we require for all n �=0

(en−E)(n|ψ̂1)=
∫
unhu0d

Nq. (C.92)

For l >1,

(en−E)(n|ψ̂l)=
∫
unhψ̂l−1d

Nq. (C.93)

Therefore, the sum

ψ̂=
∞∑
1

ψ̂l (C.94)

satisfies (C.86). In compact form,

ψ̂(q)=
∫
(q|Ĝ(E)|q)Ŝ(q)dNq, (C.95)

where

Ŝ(q)=hψ̂(q)+ (h−E)u0(q). (C.96)

The usual perturbative series can then be readily derived by first introduc-
ing a parameter ε, defined by

h(q)= εĥ(q). (C.97)
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The subsequent expansions of

E=E0 + εE(1)+ ε2E(2)+· · · (C.98)

ψ̂l = εψ̂l(1)+ ε2ψ̂l(2)+· · · (C.99)

and

Ĝ(E) = Ĝ(E0)+ εE(1)∂Ĝ(E0)

∂E0

+ε2
[
E(2)

∂

∂E0
+ 1

2
(E(1))2

∂2

∂E2
0

]
Ĝ(E0)+· · · (C.100)

lead to the usual perturbative series.
(iii) According to (C.68)–(C.69), the Green’s function G satisfies

(H0 −E0)(x|G|z)= δ(x− z), (C.101)

whereas the function Ĝ(E0) given by (C.81) satisfies, in a one-dimensional
problem,

(H0 −E0)(x|Ĝ(E0)|z)= δ(x− z)−u0(x)u0(z) (C.102)

with u0 =φ in accordance with (C.75). Thus G and Ĝ are clearly different.
As an explicit example, let

H0 =−1
2
d2

dx2
+U(x) (C.103)

and

U(x)=
⎧⎨
⎩

∞ x >R,

0 for 0<x<R,
∞ x <0,

(C.104)

similar to (C.2) and (C.4). The corresponding eigenfunction un(x) and
eigenvalue en that satisfy (C.73)–(C.74) are

un=
√

2
R

sin knx and en= 1
2
k2
n with kn= n+1

R
π, (C.105)
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and n= 0, 1, 2, . . . For λ different from any of the eigenvalues en, G(λ)
of (C.77) in this one-dimensional problem is given by

(x|G(λ)|z)=
∞∑
n=0

1
en−λun(x)un(z), (C.106)

where x and z can vary between 0 and R. Introduce

χ+ = sinp(R−x), χ− = sinpx, (C.107)

λ= 1
2
p2 (C.108)

and

ω=
(
dχ−
dx

)
χ+ −

(
dχ+
dx

)
χ− =p sinpR. (C.109)

The Green’s function G(λ) can also be written as

(x|G(λ)|y)= 2
ω

⎧⎨
⎩
χ−(x)χ+(y) x <y,

for
χ+(x)χ−(y) x >y.

(C.110)

One can readily verify that G(λ) satisfies

(x|G(λ)|y)= (y|G(λ)|x), (C.111)

(
−1

2
d2

dx2
+U(x)

)
(x|G(λ)|y)= δ(x−y) (C.112)

and the boundary conditions

(x|G(λ)|0)= (x|G(λ)|R)=0. (C.113)

As

λ→ e0 = 1
2

(π
R

)2
, (C.114)



1070 Lee

the Green’s function Ĝ(e0) of (C.81) is given by

Ĝ(e0) = lim
λ→e0

(
G(λ)− 1

e0 −λu0(y)u0(x)

)

=
∑
n�=0

1
en− e0

un(y)un(x). (C.115)

Define

φ(x)= sin k0x and φ̂(x)= cos k0x (C.116)

with k0 = π
R

. We find

(x|Ĝ|z) = R

π2
φ(x)φ(z)− 2

π

(
φ(x)zφ̂(z)+φ(z)xφ̂(x)

)

+2R
π

·
⎧⎨
⎩
φ(x)φ̂(z) x <z,

for
φ(z)φ̂(x) x >z.

(C.117)

The function G can also be expressed in terms of φ and φ̂. We have

−R
π
φ̂(x)=φ(x)

x∫

R/2

dy

φ2(y)
(C.118)

and

(x|G|z)= 2R
π

·
{
φ(x)φ̂(z)−φ(z)φ̂(x), x <z,

0, x >z.
(C.119)

Thus, G is related, but quite different from Ĝ and G.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Department of
Energy Grant DE-FG02-92ER-40699.



Low-lying States of the Schroedinger Equation 1071

REFERENCES

1. W. Marciano, hep-ph/0411179.
2. M. Davier and W. Marciano, Annu. Rev. Nucl. Part. Sci. 54:115 (2004).
3. M. Passera, hep-ph/0411168
4. F. Dyson, Phys. Rev. 85:631 (1952).
5. A. M. Polyakov, Nucl. Phys. B 121:429 (1977).
6. G. ’t Hooft, in The Why’s of Subnuclear Physics A. Zichichi and Erice (eds.) (Plenum,

New York, 1977)
7. E. Brezin, G. Parisi, and J. Zinn-Justin, Phys. Rev. D 16:408 (1977).
8. J. Zinn-Justin, J. Math. Phys. 22:511 (1981).
9. J. Zinn-Justin, Nucl. Phys. B 192:125 (1981).

10. J. Zinn-Justin, in Recent advances in field theory and statistical mechanics, Les Houches,
Session XXXIX, J.-D. Zuber and R. Stora (eds.), (1982).

11. J. Zinn-Justin, Private Communication.
12. Sidney Coleman, Aspects of Symmetry (Press Syndicate of the University of Cambridge,

1987).
13. E. Shuryak, Nucl. Phys. B 302:621 (1988).
14. S. V. Faleev and P. G. Silvestrov, Phys. Lett. A 197:372 (1995).
15. R. Friedberg, T. D. Lee, and W. Q. Zhao, IL Nuovo Cimento A 112:1195 (1999).
16. R. Friedberg, T. D. Lee, and W. Q. Zhao, Ann. Phys. 288:52 (2001).
17. R. Friedberg, T. D. Lee, W. Q. Zhao and A. Cimenser Ann. Phys. 294:67 (2001).
18. R. Friedberg and T. D. Lee, Ann. Phys. 308:263 (2003).
19. R. Friedberg and T. D. Lee, Ann. Phys. 316:44 (2005).
20. See, e.g., Philip M. Morse and Herman Feshbach, Methods of Theoretical Physics,

(McGraw-Hill Brook Co. 1953).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


